Worksheet 95 Answers

1)
$$\frac{dy}{dx} = xy^{2}$$
 $\frac{1}{y^{2}} \frac{dy}{dx} = 9y$
 $\frac{1}{y^{2}} \frac{dy}{dy} = x dx$
 $\frac{1}{y^{2}} \frac{dy}{dy} = 9 dx$
 $y^{-2} \frac{dy}{dy} = x dx$
 $\frac{1}{y^{2}} \frac{dy}{dy} = 9 dx$
 $\frac{1}{y^{2}} \frac{dy}{dy} = x dx$
 $\frac{1}{y^{2}} \frac{dy}{dx} = 9 dx$
 $\frac{1}{y^{2}}$

1)
$$\frac{dy}{dx} = x y^{2}$$
 $\frac{dy}{dx} = 9y$
 $\frac{1}{y^{2}} dy = x dx$ $\frac{1}{y} dy = 9 dx$
 $y^{-2} dy = x dx$ $\frac{1}{y} dy = 9 x + C$
 $- y^{-1} + C = \frac{1}{2}x^{2} + C$ $\frac{1}{y} = 9x + C$
 $\frac{1}{y} = -\frac{1}{2}x^{2} + C$ $\frac{1}{y} = e^{9x} + C$
 $\frac{1}{y} = -\frac{1}{2}x^{2} + C$ $\frac{1}{y} = e^{9x} \cdot e^{c}$
 $\frac{1}{y} = -\frac{1}{2}x^{2} + C$ $\frac{1}{y} = e^{9x} \cdot e^{c}$
 $\frac{1}{y} = -\frac{1}{2}x^{2} + C$ $\frac{1}{y} = Ce^{9x}$
 $\frac{1}{y} = Ce^{9x}$

4)
$$\frac{dy}{dx} = 2\sqrt{x}$$
 $dy = 2x^{1/2}dx$
 $y + C = \frac{4}{3}x^{3/2} + C$
 $y = \frac{4}{3}x^{3/2} + C$

5)
$$\frac{dy}{dx} = \frac{x}{y}$$
 $y=2, x=1$
 $y dy = x dx$
 $\frac{1}{2}y^2 + C = \frac{1}{2}x^2 + C$
 $\frac{1}{2}(2)^2 = \frac{1}{2}(1)^2 + C$
 $\frac{3}{2} = C$
 $\frac{1}{2}y^2 = \frac{1}{2}x^2 + \frac{3}{2}$
 $y = x^2 + 3$
 $y = \sqrt{x^2 + 3}$

6)
$$\frac{dy}{dx} = -\frac{x}{y} \quad y=3, \quad x=4$$
 $y \, dy = -x \, dx$
 $\frac{1}{2}y^2 + C = -\frac{1}{2}x^2 + C$
 $\frac{1}{2}y^2 = -\frac{1}{2}x^2 + C$
 $\frac{1}{2}(3)^2 = -\frac{1}{2}(4)^2 + C$
 $\frac{9}{2} = -8 + C$
 $\frac{25}{2} = C$
 $\frac{1}{2}y^2 = -\frac{1}{2}x^2 + \frac{25}{2}$
 $y^2 = -x^2 + 25$
 $y = \sqrt{-x^2 + 25}$
 $y \neq 0$

8)
$$\frac{dy}{dx} = 2xy$$
 $y = 3$ when $x = 0$

$$\frac{1}{y} dy = 2x dx$$

$$\ln|y| + C = x^{2} + C$$

$$\ln|y| = x^{2} + C$$

$$\ln 3 = 0^{2} + C$$

$$\ln 3 = C$$

$$\ln|y| = x^{2} + \ln 3$$

$$|y| = e^{x^{2}} + \ln 3$$

$$|y| = e^{x^{2}} + \ln 3$$

$$|y| = 3e^{x^{2}}$$

$$|y| = 3e^{x^{2}}$$

7)
$$\frac{dy}{dx} = \frac{y}{x}$$
 $y = 2$; $x = 2$
 $\frac{1}{y} dy = \frac{1}{x} dx$
 $ln|y| + C = ln|x| + C$
 $ln|y| = ln|x| + C$
 $ln|y| = ln|x| + C$
 $ln|y| = ln|x|$
 $|y| = |x|$
 $|y| = |x|$
 $|y| = |x|$
 $|y| = |x|$
 $|y = x$; $(0, \infty)$

9) $\frac{dy}{dx} = (y+5)(x+2)$ $y = 1$, $x = 0$
 $\frac{1}{y+5} dy = (x+2) dx$
 $ln|y+5| + C = \frac{1}{2}x^2 + 2x + C$
 $ln|y+5| = \frac{1}{2}x^2 + 2x + C$
 $ln|y+5| = \frac{1}{2}(0) + 2(0) + C$
 $ln|y+5| = e^{\frac{1}{2}(x^2 + 2x + ln b)}$
 $|y+5| = e^{\frac{1}{2}x^2 + 2x + ln b}$
 $|y+5| = e^{\frac{1}{2}x^2 + 2x + ln b}$
 $|y+5| = e^{\frac{1}{2}x^2 + 2x + ln b}$
 $|y+5| = 6 e^{\frac{1}{2}x^2 + 2x}$

y = 6e = x 2+2x - 5